# <u>Understanding Spatial</u> <u>Multi-Criteria Decision Making</u>

by: Rodrigo Nobrega "Sal"

sal@gri.msstate.edu

an analytical demonstration of MCDM-AHP and how to is used in GIS



# **Topics presented**

- Multi-Criteria: What it is? How does it works? Techniques available
- Analytical Hierarchy Process
- AHP → GIS → Spatial MCDM developing numbers from input rankings
- Results and future implementations

an analytical demonstration of MCDM-AHP and how to is used in GIS



### What is MCDM?

Systematic way to select the best available alternatives based on different opinions and conflicting priorities and values.



Haas & Meixner (2006) http://www.boku.ac.at/mi/

# Why should we use it?

- MCDM enables multiple stakeholder preferences to be modeled
- MCDM offers improved coordination and collaboration
- MCDM can be implemented to integrate spatial information

an analytical demonstration of MCDM-AHP and how to is used in GIS



### **How does MCDM works?**

# **Problem Solving technique**

Goal 1-269

### Objectives

- 1) Economy
- 2) Safety
- 3) Minimum environmental impact

#### Factors

- 1) Desired distance from urban areas
- 2) Avoid wetlands and forest
- 3) Stay out (but not far) of ag fields

### Criteria

- 1)  $D < 1mi \rightarrow very high$
- 2) 1mi < D < 2mi → high
- 3) 2mi < D < 3mi → med
- 4) 3mi < D < 4mi → low
- 5) 4mi < D < 6mi → med
- 6) D > 6mi → high

#### Alternatives

- 1) **B1**
- 2) B2
- 3) B3

an analytical demonstration of MCDM-AHP and how to is used in GIS



# "Problem Solving" techniques

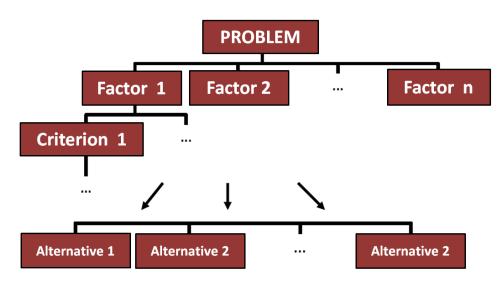
- SAW (Simple Additive Weighing)
- TOPSIS (Technique for Order Preferences by Similarity to the Ideal Solution)
- AHP (Analytical Hierarchy Process)

#### and more...

- ELECTRE (Elimination et Choice Translating Reality)
- Bayesian Network Based Framework
- SMART (Simple Multiple Attribute Rating Technique)
- ANP (Analytic Network Process)






# **Analytic Hierarchy Process - AHP**

- It is a very robust problem solve technique based on pairwise comparisons, developed in early 70's by Dr. Thomas Saaty as a method to help solve conflicts in ecomonic models.
- MCDM has been adapted from AHP to assist numerous corporate and govenment decision makers in different fields
- Problems are decomposed into a hierarchy of factors and criteria.



### **AHP flowchart**

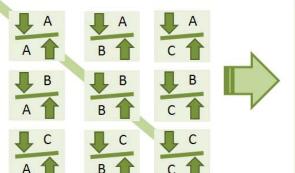
AHP uses a hierarchical structure to solve problems
 Factors and criteria → multi-level



Adapted from Haas & Meixner (2006)

#### understanding spatial multi-criteria decision making

an analytical demonstration of MCDM-AHP and how to is used in GIS




# AHP – procedures



Decision maker & Stakeholders inputs

Pair-wise comparisons



Normalization & consistency ratio



Ranking of alternatives



an analytical demonstration of MCDM-AHP and how to is used in GIS



# AHP – pair-wise comparisons

Pair-wise comparisons should use the Saaty's scale, which ranges from 1 (equal value) to 9 (extreme different)

Pair-wise is applicable for all levels of the AHP process (concurrent factors and concurrent criteria as well)

| Intensity of | Definition                                                                                                                                 | Explanation                                                                               |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| Importance   |                                                                                                                                            |                                                                                           |  |  |  |  |
| 1            | Of equal value                                                                                                                             | Two requirements are of equal value                                                       |  |  |  |  |
| 3            | Slightly more value                                                                                                                        | Experience slightly favors one requirement<br>over another                                |  |  |  |  |
| 5            | Essential or strong value                                                                                                                  | Experience strongly favors one requirement over another                                   |  |  |  |  |
| 7            | Very strong value                                                                                                                          | A requirement is strongly favored and its<br>dominance is demonstrated in practice        |  |  |  |  |
| 9            | Extreme value                                                                                                                              | The evidence favoring one over another is<br>of the highest possible order of affirmation |  |  |  |  |
| 2, 4, 6, 8   | Intermediate values between two adjacent judgments                                                                                         | When compromise is needed                                                                 |  |  |  |  |
| Reciprocals  | If requirement one has one of the above numbers assigned to it when compared with requirement second, then second has the reciprocal value |                                                                                           |  |  |  |  |
|              | when compared with first                                                                                                                   |                                                                                           |  |  |  |  |

Scale for pair-wise comparison (Saaty 1980)

an analytical demonstration of MCDM-AHP and how to is used in GIS



# AHP – normalization and consistency analysis

| CRITERIA  | urbanized | wetlands | water      | slope   | Normaliz  | ed Wt. |
|-----------|-----------|----------|------------|---------|-----------|--------|
| urbanized | 1.0       | 3.00     | 4.50       | 9.00    | urbanized | 0.6000 |
| wetlands  | 0.3       | 1.00     | 1.50       | 3.00    | wetlands  | 0.2000 |
| water     | 0.2       | 0.67     | 1.00       | 2.00    | water     | 0.1333 |
| slope     | 0.1       | 0.33     | 0.50       | 1.00    | slope     | 0.0667 |
|           |           |          |            |         |           |        |
|           | nair-     | wise ir  | normalized | Linnuts |           |        |

|               | Consist               | ency   | Ratio               |                     |
|---------------|-----------------------|--------|---------------------|---------------------|
| Step1 x Step3 | Consistency<br>Vector | λ      | Consitency<br>Index | Consitency<br>Ratio |
| 2.40          | 4.00                  | 1.60   | -0.80               | -0.2000             |
| 0.80          | 4.00                  |        |                     | PASSED!             |
| 0.53          | 4.00                  |        |                     |                     |
| 0.27          | 4.00                  |        |                     |                     |
|               |                       |        |                     |                     |
|               |                       |        | n                   | RI                  |
|               |                       |        | n=2                 |                     |
| Ot-l-1        |                       |        | n=3                 |                     |
| Saaty's Inco  | _                     |        |                     | 0.9                 |
| RI            |                       | (n=10  | n=5<br>n=6          |                     |
| " if RI < 0.1 | lasses)               | aro OK |                     |                     |
| 11 141 < 0.1  | " weignis             | are OK | n=7                 |                     |
|               |                       |        | n=8<br>n=9          |                     |
|               |                       |        | n=10                |                     |

an analytical demonstration of MCDM-AHP and how to is used in GIS



### Normalization: "behind the scene"

For a matrix of pair-wise elements:  $\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}$ 

1) sum the values in each column of the pair-wise matrix

$$C_{ij} = \sum_{i=1}^{n} C_{ij}$$

2) divide each element in the matrix by its column total to generate a normalized pair-wise matrix

$$X_{ij} = \frac{C_{ij}}{\sum_{i=1}^{n} C_{ij}} \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix}$$

3) divide the sum of the normalized column of matrix by the number of criteria used (n) to generate weighted matrix

$$W_{ij} = \frac{\sum_{j=1}^{n} X_{ij}}{n} \begin{bmatrix} W_{11} \\ W_{12} \\ W_{13} \end{bmatrix}$$

an analytical demonstration of MCDM-AHP and how to is used in GIS



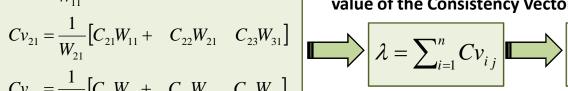
# Consistency analysis: "behind the scene"

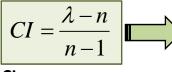
Consistency Vector is calculated by multiplying the pair-wise matrix by the weights vector

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} * \begin{bmatrix} W_{11} \\ W_{21} \\ W_{31} \end{bmatrix} = \begin{bmatrix} Cv_{11} \\ Cv_{21} \\ Cv_{31} \end{bmatrix}$$

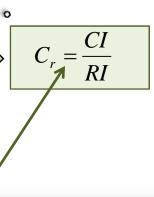


Then it is accomplished by dividing the weighted sum vector with criterion weight


$$Cv_{11} = \frac{1}{W_{11}} \begin{bmatrix} C_{11}W_{11} + C_{12}W_{21} & C_{13}W_{31} \end{bmatrix}$$


$$Cv_{21} = \frac{1}{W_{21}} \begin{bmatrix} C_{21}W_{11} + C_{22}W_{21} & C_{23}W_{31} \end{bmatrix}$$

$$Cv_{31} = \frac{1}{W_{31}} [C_{31}W_{11} + C_{32}W_{21} C_{33}W_{31}]$$




λ is calculated by averaging the value of the Consistency Vector

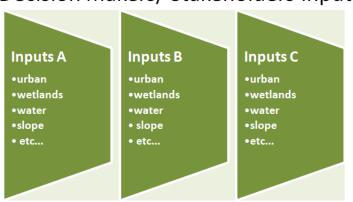




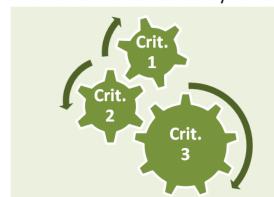
CI measures the deviation



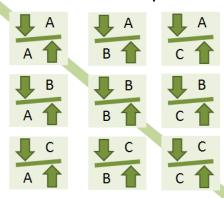
RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.46

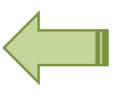

Source: Satty (1980).

an analytical demonstration of MCDM-AHP and how to is used in GIS




# Real world needs: ranking instead pair-wise inputs


### Decision makers/ Stakeholders inputs








#### Pair-wise comparisons







an analytical demonstration of MCDM-AHP and how to is used in GIS

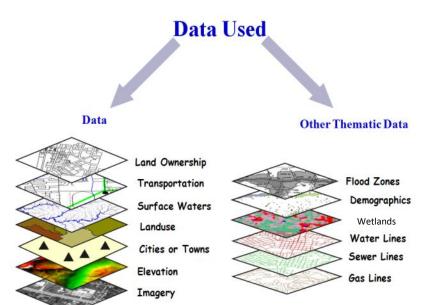


# **AHP + GIS = Spatial MCDM**

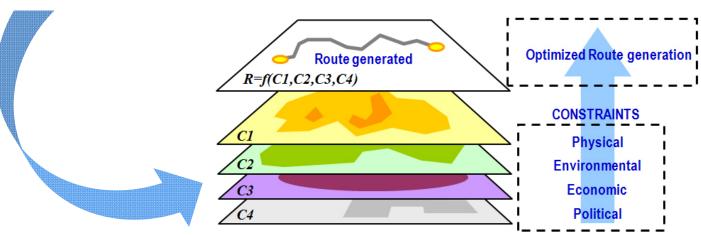
- 1) Selecting factors "positive/negative impact for environment cost, etc."
- 2) Ranking criteria (single scenarios)

  "quantifying degree of influence → ex: distance from Wetlands"
- 3) Ranking factors (combined scenarios)

  "quantifying importance of factors → ex: Wetlands X


  Agriculture"
- 4) From ranking to weights "mathematical approach based on pair-wise comparisons"
- 5) Least-Cost Path
  "GIS approach with map algebra"



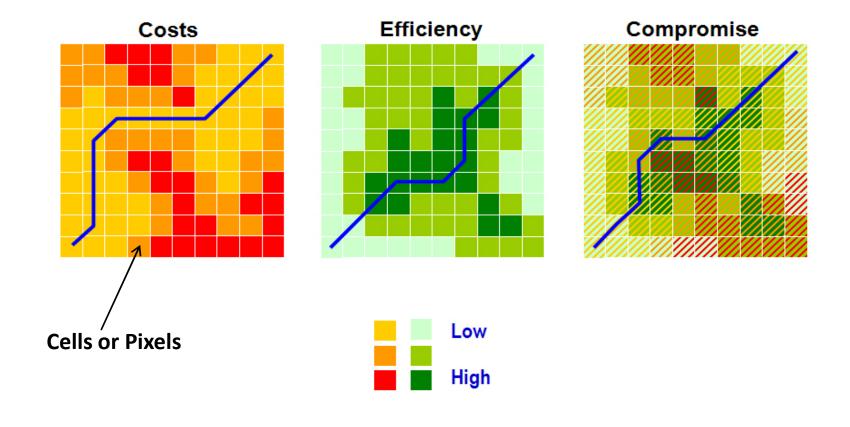

an analytical demonstration of MCDM-AHP and how to is used in GIS



### **AHP + GIS = Spatial MCDM**



- Weights represent the resistance, friction or difficulty in crossing the cell which is expressed as cost
- Creation of accumulated-cost-surface grid from a costof-passage where friction values are stored
- •Tracing a line of least cost from the accumulated-costsurface (Douglas 1994)




an analytical demonstration of MCDM-AHP and how to is used in GIS

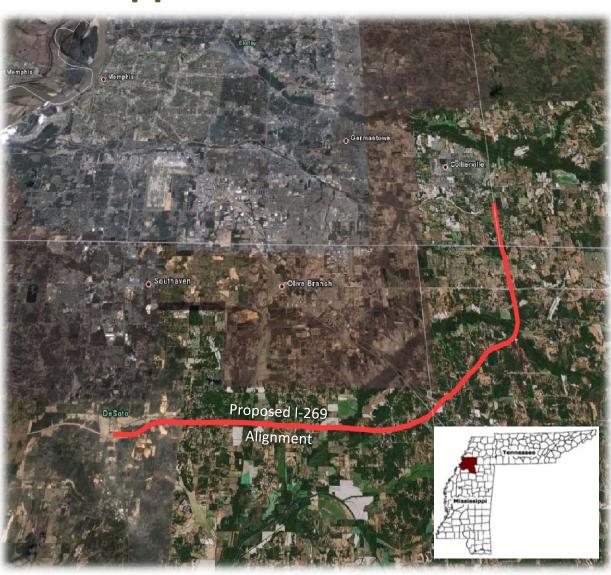


# **AHP + GIS = Spatial MCDM**

### Data → raster format (digital image)



an analytical demonstration of MCDM-AHP and how to is used in GIS




# **Spatial MCDM: case application**

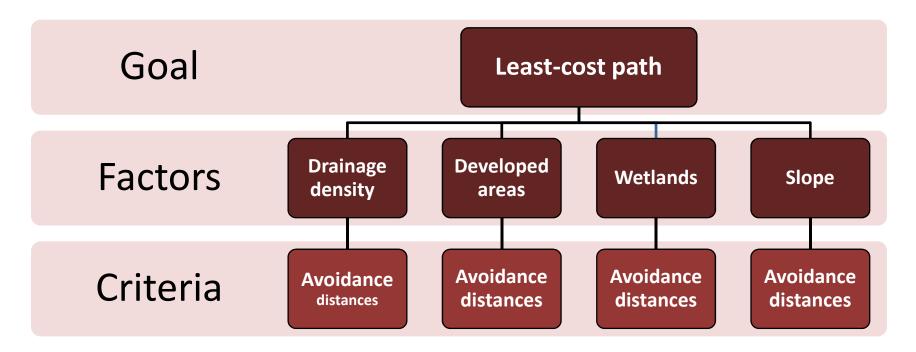
### **Study Area**

The testbed used is a part of the I-269

Around 30-mile corridor that connects Hernando-MS to Collierville-TN

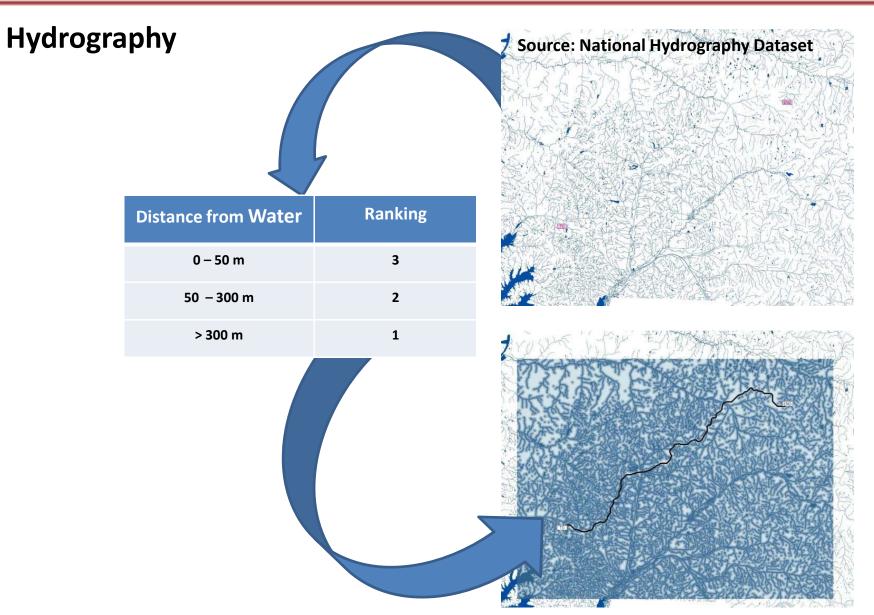


an analytical demonstration of MCDM-AHP and how to is used in GIS




# **Spatial MCDM: case application**

(hypothetical values)


#### Four factors:

- Drainage density (waterbodies + streams)
- Developed areas
- Wetlands
- Slope



an analytical demonstration of MCDM-AHP and how to is used in GIS





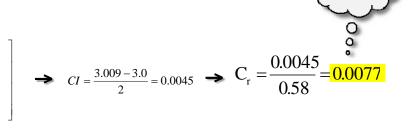
an analytical demonstration of MCDM-AHP and how to is used in GIS



# **Criteria inputs:**

3 = close

2 = medium 1 = far


#### **Computing weights**

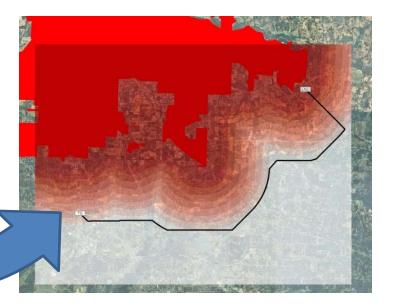
| _       | Step-I |     |     |         |        | Step – II |        | Step – III               |        |
|---------|--------|-----|-----|---------|--------|-----------|--------|--------------------------|--------|
| Classes | DD1    | DD2 | DD3 | Classes | Cl1    | Cl2       | Cl3    | / <b>n</b>               | Std.Wt |
| DD1     | 1      | 2   | 3   | Cl1     | 0.5455 | 0.5714    | 0.5    | 0.5455 + 0.5714 + 0.5    | 0.5389 |
| DD2     | 1/2    | 1   | 2   | Cl2     | 0.2727 | 0.2857    | 0.3333 | 0.2727 + 0.2857 + 0.3333 | 0.2972 |
| DD3     | 1/3    | 1/2 | 1   | Cl3     | 0.1818 | 0.1428    | 0.1666 | 0.1818 + 0.1428 + 0.1666 | 0.1637 |
| Totals  | 1.833  | 3.5 | 6.0 |         |        |           |        |                          |        |

### **Consistency ratio analysis:**

$$\begin{bmatrix} Step-I \\ Classes & DD1 & DD2 & DD3 & Std.Wts \\ DD1 & 1 & 2 & 3 & 0.5389 \\ DD2 & 1/2 & 1 & 2 & * & 0.2972 \\ DD3 & 1/3 & 1/2 & 1 & 0.1637 \end{bmatrix} = \begin{bmatrix} Cv \\ 1.6244 \\ 0.89405 \\ 0.4919 \end{bmatrix}$$

$$\begin{bmatrix} Step-II \\ Cv_1 & 1.6244/0.5389 = 3.0142 \\ Cv_2 & 0.89405/0.2972 = 3.0082 \\ Cv_3 & 0.4919/0.1637 = 3.0048 \\ \lambda = 3.009 & Average-this-column \end{bmatrix}$$




an analytical demonstration of MCDM-AHP and how to is used in GIS



# **Distance from MPO Urbanized Limits**



| Distance from MPO | Ranking |
|-------------------|---------|
| 0 – 2 Km          | 5       |
| 2 – 4 Km          | 4       |
| 4 – 6 Km          | 3       |
| 6 – 8 Km          | 2       |
| > 8 Km            | 1       |
|                   |         |



an analytical demonstration of MCDM-AHP and how to is used in GIS

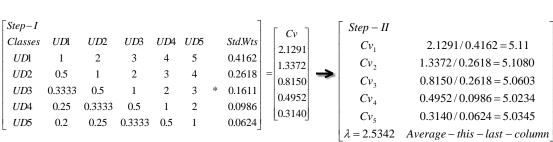


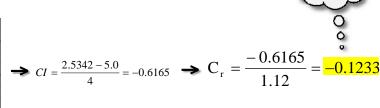
### **Criteria inputs:**

5 = inner city

4 = close

3 = medium

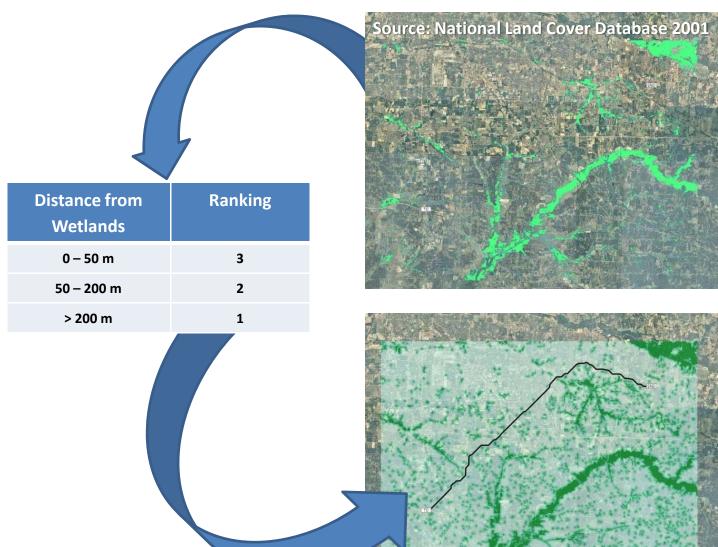

2 = far


**1** = so far

### **Computing weights**

| Step–I  |        |        |        |     |     | Step-II |      |       |       |       |       | Step-III                                                        | 7         |
|---------|--------|--------|--------|-----|-----|---------|------|-------|-------|-------|-------|-----------------------------------------------------------------|-----------|
| Classes | UD1    | UD2    | UD3    | UD4 | UD5 | UI      | 1 1  | UD2   | UD3   | UD4   | UD5   | /n                                                              | StdWeigth |
| UD1     | 1      | 2      | 3      | 4   | 5   | 0.43    | 88 ( | 0.439 | 0.439 | 0.381 | 0.333 | 0.438 + 0.489 + 0.439 + 0.381 + 0.333                           | 0.4162    |
| UD2     | 0.5    | 1      | 2      | 3   | 4   | 0.2     | 9 (  | 0.244 | 0.292 | 0.285 | 0.266 | $0.219 \!\!+\! 0.244 \!\!+\! 0.292 \!\!+\! 0.285 \!\!+\! 0.266$ | 0.2618    |
| UD3     | 0.333  | 0.5    | 1      | 2   | 3   | 0.14    | l6 ( | 0.122 | 0.146 | 0.190 | 0.200 | $0.146 \!+\! 0.122 \!+\! 0.146 \!+\! 0.190 \!+\! 0.200$         | 0.1611    |
| UD4     | 0.25   | 0.333  | 0.5    | 1   | 2   | 0.10    | 9 (  | 0.081 | 0.073 | 0.095 | 0.133 | $0.109 \!+\! 0.081 \!+\! 0.073 \!+\! 0.095 \!+\! 0.133$         | 0.0986    |
| UD5     | 0.2    | 0.25   | 0.333  | 0.5 | 1   | 0.08    | 37 ( | 0.061 | 0.048 | 0.047 | 0.066 | $0.087 \! + \! 0.061 \! + \! 0.048 \! + \! 0.047 \! + \! 0.066$ | 0.0624    |
| Totals  | 2.2833 | 4.0833 | 6.8333 | 105 | 15  |         |      |       |       |       |       |                                                                 | j         |

#### **Consistency ratio analysis:**






an analytical demonstration of MCDM-AHP and how to is used in GIS



### Wetlands

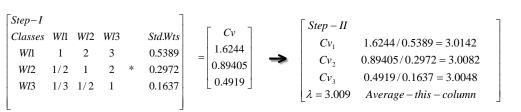


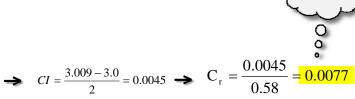
an analytical demonstration of MCDM-AHP and how to is used in GIS



**Criteria inputs:** 

3 = close

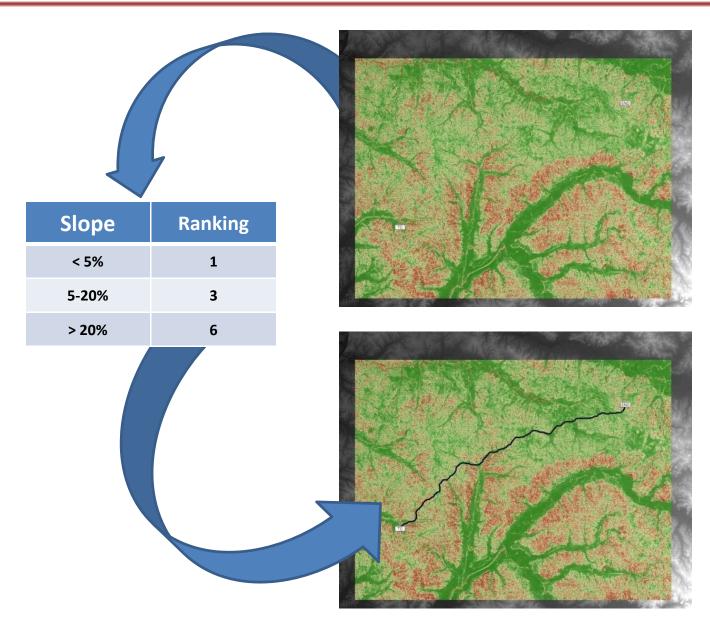

2 = medium


1 = far

### **Computing weights**

| Γ       | Step-I |     |     |             |        | Step – II |        | Step – III               |        |
|---------|--------|-----|-----|-------------|--------|-----------|--------|--------------------------|--------|
| Classes | Wl1    | Wl2 | Wl3 | Classes     | Cl1    | Cl2       | Cl3    | / <b>n</b>               | Std.Wt |
| Wl1     | 1      | 2   | 3   | Wl1         | 0.5455 | 0.5714    | 0.5    | 0.5455 + 0.5714 + 0.5    | 0.5389 |
| Wl2     | 1/2    | 1   | 2   | Wl2         | 0.2727 | 0.2857    | 0.3333 | 0.2727 + 0.2857 + 0.3333 | 0.2972 |
| Wl3     | 1/3    | 1/2 | 1   | <i>Wl</i> 3 | 0.1818 | 0.1428    | 0.1666 | 0.1818 + 0.1428 + 0.1666 | 0.1637 |
| Totals  | 1.833  | 3.5 | 6.0 |             |        |           |        |                          |        |

#### **Consistency ratio analysis:**






an analytical demonstration of MCDM-AHP and how to is used in GIS

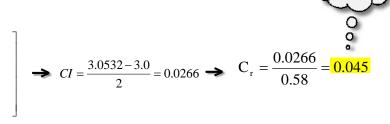


### **Topography**



an analytical demonstration of MCDM-AHP and how to is used in GIS




# **Criteria inputs:**

1 = flat

#### **Computing weights**

| =       | Step-I      |      |      |         |        | Step-II |     | Step – III            |        |
|---------|-------------|------|------|---------|--------|---------|-----|-----------------------|--------|
| Classes | <i>SC</i> 1 | SC2  | SC3  | Classes | Cl1    | Cl2     | Cl3 | / <b>n</b>            | Std.Wt |
| SC1     | 1           | 4    | 6    | LD1     | 0.7092 | 0.7504  | 0.6 | 0.7092 + 0.7504 + 0.6 | 0.6865 |
| SC2     | 1/4         | 1    | 3    | LD2     | 0.1773 | 0.1876  | 0.3 | 0.1773 + 0.1876 + 0.3 | 0.2216 |
| SC3     | 1/6         | 1/3  | 1    | LD3     | 0.1182 | 0.0625  | 0.1 | 0.1182 + 0.0625 + 0.1 | 0.0935 |
| Totals  | 1.41        | 5.33 | 10.0 | ••      |        |         |     |                       |        |

#### **Consistency ratio analysis:**

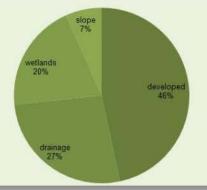


an analytical demonstration of MCDM-AHP and how to is used in GIS



# **Combining multiple scenarios**

### (hypothetical values)


7 = develope area

4 = drainage density

1 = slope

3 = wetlands

|                  | MCDM                                       |                          |                            | - 1                          | 101                                 | Step 1 | Step 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Step                                       | 3                                    |
|------------------|--------------------------------------------|--------------------------|----------------------------|------------------------------|-------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|
| anking           | CRITERIA                                   | developed<br>7           | drainage<br>4              | wetands<br>3                 | slope<br>1                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Normaliz                                   | ed Wt.                               |
| 7<br>4<br>3<br>1 | developed<br>drainage<br>wetlands<br>slope | 1.0<br>0.6<br>0.4<br>0.1 | 1.75<br>1.00<br>0.8<br>0.3 | 2.33<br>1.33<br>1.00<br>0.33 | 7.00<br>4.00<br>3.00<br><b>1.00</b> |        | 0.467 0.467 0.467 0.267 0.267 0.267 0.267 0.267 0.260 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 | developed<br>drainage<br>westands<br>slope | 0.4667<br>0.2667<br>0.2000<br>0.0667 |
|                  | 4                                          | 2.1                      | 3.75                       | 5.00                         | 15.00                               |        | 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 1.0000                               |



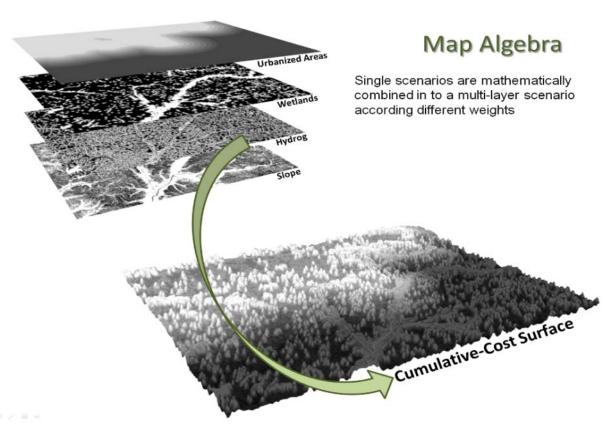
|               | Consist               | ency     | Ratio               |                     |
|---------------|-----------------------|----------|---------------------|---------------------|
| Step1 x Step3 | Consistency<br>Vector | A        | Consitency<br>Index | Consitency<br>Ratio |
| 1.87          | 4.00                  | 1.60     | -0:80               | -0.2000             |
| 1.07          | 4.00                  |          |                     | PASSEDI             |
| 0.80          | 4.00                  |          |                     |                     |
| 0.27          | 4.00                  |          |                     |                     |
|               |                       |          | п                   | RJ                  |
|               |                       |          | n=2                 | 0.00                |
|               |                       |          | n=3                 | 0.58                |
|               |                       |          | n=4                 | 0.9                 |
| aaty's Incor  | nsistency Inc         | fices RI | n=5.                | 1.12                |
| (n=           | (0 Classes)           |          | n=6                 | 1.24                |
| " If RI < 0.1 | 🔊 weights ar          | e OK "   | /1=7                | 1.32                |
|               |                       |          | n=8                 | 141                 |
|               |                       |          | n=9                 | 1.46                |
|               |                       |          | n=10                | 1.49                |

#### understanding spatial multi-criteria decision making

an analytical demonstration of MCDM-AHP and how to is used in GIS



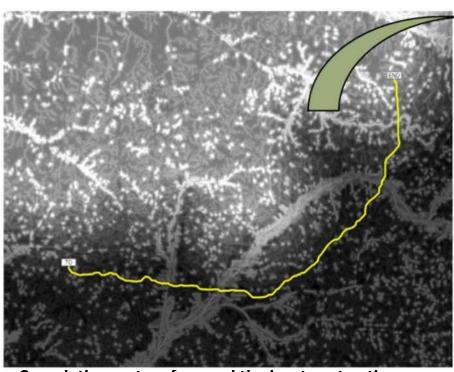
# **Combining multiple scenarios**


| <b>Factor</b> | Rank | Weight |
|---------------|------|--------|
| UD            | 7    | 0.4667 |
| DD            | 4    | 0.2667 |
| WL            | 3    | 0.2000 |
| SC            | 1    | 0.0667 |



0.4667\*(UD) + 0.2667\*(DD) + 0.2\*(WL) + 0.0667\*(SC)

In multiple layer cases, assigned numerical values that provide relative weights are also normalized.


In this approach, each stakeholder may select weights that match their personal and professional perspective and values to create a unique cost surface and cost path!



an analytical demonstration of MCDM-AHP and how to is used in GIS



### **Least-Cost Path**

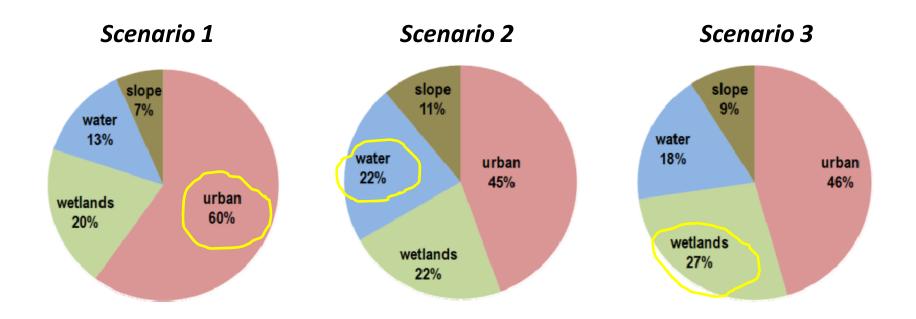


Cumulative cost surface and the least-cost path



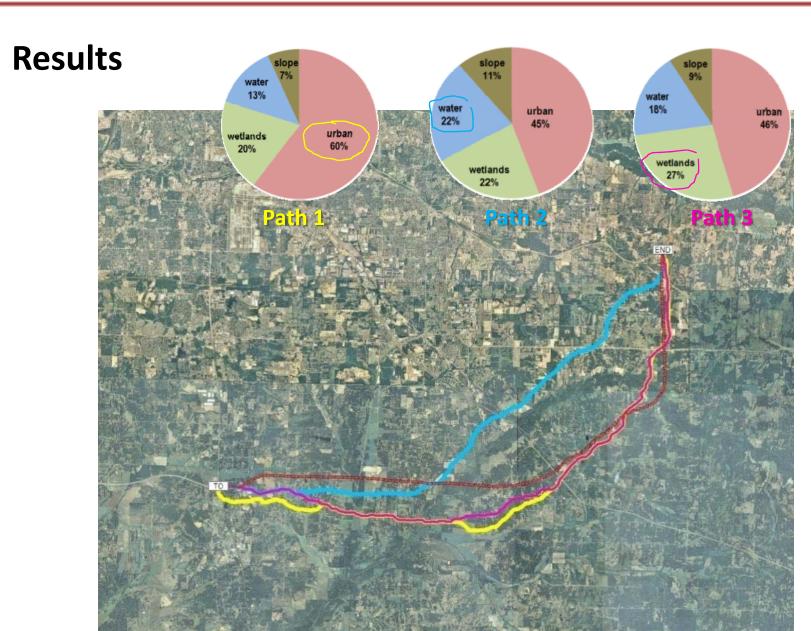
Least-cost path visualized using Google Earth

an analytical demonstration of MCDM-AHP and how to is used in GIS




# SENSITIVE ANALYSIS USING MCDM




# **Putting together different scenarios**

INPUT → rankings
OUTPUT → least-cost path

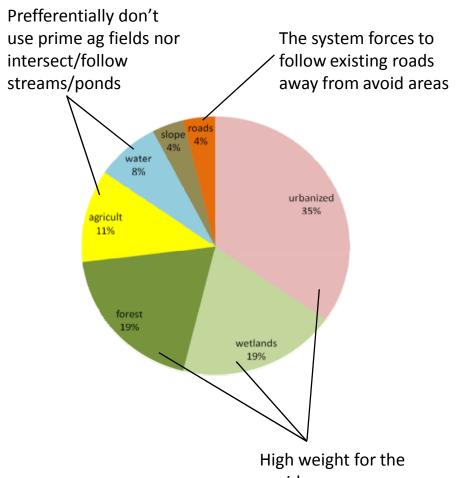


an analytical demonstration of MCDM-AHP and how to is used in GIS





an analytical demonstration of MCDM-AHP and how to is used in GIS



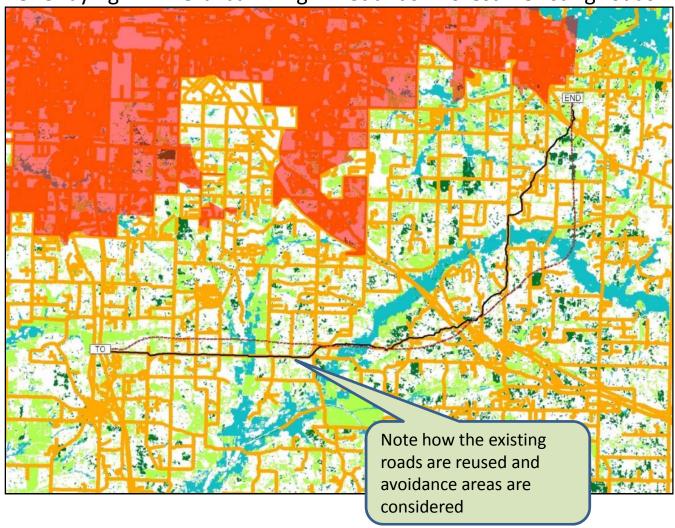

### **ADDING MORE FACTORS**



### Increasing the complexity of the analysis

| FACTOR           | Ranking                                   |
|------------------|-------------------------------------------|
| MPO urban limits | 9<br>criteria: dist from 0 – 7 Km         |
| Wetlands         | 5<br>avoidance                            |
| Forest           | 5<br>avoidance                            |
| Agriculture      | 3<br>High cost                            |
| Hydrography      | <b>2</b><br>criteria: dist from 0 – 300 m |
| Roads            | 1 Reuse existing roads                    |
| Slope            | 1<br>0-20%, >20%                          |




avoidance areas

an analytical demonstration of MCDM-AHP and how to is used in GIS



# **Experimenting Aditional Factor and Scenarios**

Overlaying: MPO urban + Ag + wetlands + forest + existing roads



### understanding spatial multi-criteria decision making

an analytical demonstration of MCDM-AHP and how to is used in GIS



### **MCDM Research Results**

Feb 2009 - MSU Transportation Workshop

Poster presentation: NOBREGA et al. Environmental sensitive corridor planning using MCDM

March 2009 – ASPRS Annual Conference

Paper/Oral presentation: SADASIVUNI et al. A transportation corridor case study for multi-criteria decision analysis.

April 2009 – Management of Environmental Qualify International Journal

Journal paper (submitted): NOBREGA et al. Bridging decision making process and environmental needs in transportation corridor planning

Journal papers in progress:

MCDM and non-traditional remote sensing data inputs (in collaboration with MTRI)

An innovative MCDM approach for corridor planning based on integrated multi-scale data and AHP method

an analytical demonstration of MCDM-AHP and how to is used in GIS



# That's it!

Next presentation: application & results